Application Note RAN502012R0 Tested Version : RWC5020x_NST SW V1.000 RWC5020x FW V1.320

Manufacturing test solution for LoRa products using RWC5020x and example application program

Background

RedwoodComm is proposing 3 kinds of manufacturing test solutions for faster testing LoRa products using the non-signaling function of RWC5020x. The first is TX only test, the second is RX only test, and the third is MFG(manufacturing) test for both TX and RX test. The all three tests will be done in non-signaling test mode. Basically a manufacturing test of LoRa products should be performed in non-signaling mode because of two reasons; test time and a type of DUT. Testing in signaling mode requires much longer test time caused by the limitation of LoRa communication technology. Testing in non-signaling mode does not concern a type of DUT, in other words, either End-devices or Gateways can be tested under the same test concept.

Test Environment

We tested and verified the proposed manufacturing tests with the RWC5020B and a B-L072Z LRWAN end device of ST microelectronics. In this document, all test procedures and test conditions are described with an end-device(Fig 1). The example application program is available on RedwoodComm's website.

Tester : <u>RWC5020A/B/M Tester for LoRaWAN</u>

DUT(Device Under Test, End device) : <u>B-L072Z LRWAN end device of ST microelectronics</u> Application : Manufacturing test application for LoRa devices using RWC5020x (including C# source code)

Fig 1. Connection for test

NST-MFG(Manufacturing)

In this solution, measuring TX power and RX sensitivity of DUT can be performed at once without controlling the DUT. But the DUT is required to operate in the special test mode, which is described as 'DUT Requirement' in the following sections. There is a way to get PER information and to measure POWER of the DUT in the special and simple test protocol.

Test Procedure

Although the test is performed in non-signaling mode, simple protocol should be defined for test automation in production lines as communication between the tester and DUT. Fig 1 shows the test procedure for MFG test using RWC5020x and DUT can be an End-device or a Gateway. The procedure consists of 3 steps as follows.

Step 1

Upon starting the test, the tester waits for the first packet from DUT, which indicates DUT is ready to be tested. The first 2 bytes of payload in this packet shall be 0xFFFF which means it's the control packet to initiate the test (START_FLAG) and the rest of payload may contain user-defined data for application purpose, e.g., serial number of DUT. The maximum length of the user-defined data shall be 128 bytes. Then DUT should be ready to receive test packets from the tester and count them.

Step 2

Once the tester receives the first packet (START_FLAG) from DUT, it starts transmitting the test packets. The test packet is described in the Parameter Configuration section. The time interval between consecutive packets can be configured by users, which may depend on the receivability of DUT and may affect the resultant total test time. Test packets should be transmitted at the defined power level of the tester to evaluate the receiver performance of DUT, while DUT counts the number of successfully received packets, denoted as *K*. After packets are transmitted *N* times, the number of packets defined by users, the tester sends the control packet to inform the transmission ends (END_FLAG) and to force DUT to be ready to report the *K* value to the tester. The control packet should be transmitted at 20dB higher power than the power of test packets for reliability of control.

Step 3

The tester waits for the report packet from DUT within the report timeout defined by users. DUT should wait at least 500ms after receiving END_FLAG, transmit the report packet containing K value of 2byte-long, and retransmit the same packet twice with a time interval (Δ t) for reliability of test and power measurements. Then the tester calculates Packet Error Rate (PER) by *K* / *N* and measures the power to check whether the results meet the user criteria.

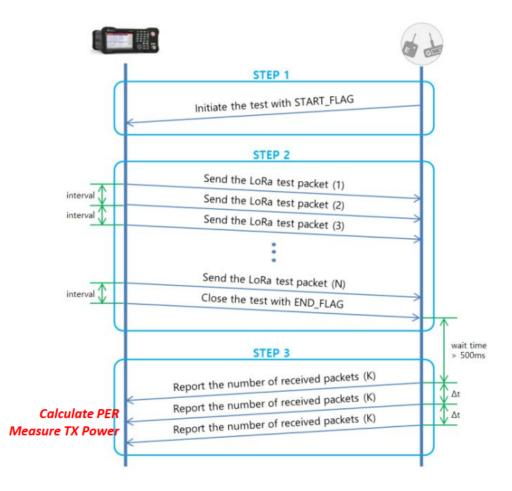


Fig 2. Test procedure between the tester and the DUT for the NST-MFG test

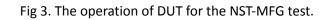
DUT processing procedure

DUT processing for Step 1

After power-on, DUT shall transmit START_FLAG (the first 2 bytes should be 0xFFFF). Users can load any useful data into payload such as the serial number of DUT with the maximum length of 128 bytes. After transmission, DUT should be ready to receive test packets from the tester and count them. If there is no test packet from the tester within its own timeout, DUT shall retransmit the same START_FLAG.

DUT processing for Step 2

DUT shall count the number of packets (K), received successfully. Upon receiving END_FLAG, DUT shall prepare to send the report packet containing the K value of 2byte-long.


DUT processing for Step 3

DUT shall wait at least 500ms and transmit the report packet including K value in payload 3 times. Each transmission must be done every time interval (Δt) within the report timeout defined by the

user. Then DUT may switch to normal firmware or the final firmware may be downloaded to DUT at the next stage in the production line.

Power On DUT TX Initiate DUT transmits START_FLAG DUT RX test packet No received within TO? Yes DUT counts the number of packets (K) that received successfully Count No Tester verdicts as FAIL END_FLAG by report timeout received? Yes DUT TX DUT transmits the report packet Report (Kvalue in payload) User's next action

DUT's State Transition Diagram

Packet Format

START_FLAG packet(2B~128B)

It is issued by DUT Maximum length of packet is 128B The very first 2BYTEs must be 'FFFF'. Users can transmit START_FLAG with its own data, i.e. the Serial number of DUT.

EX) FFFF534E3A5257313233343531(="SN:RW123451")

END_FLAG packet(2B)

It is issued by Tester Payload length is 2B. The Very first 2 BYTEs are always 'FFFF'.

REPORT packet(2B)

It is issued by DUT Payload length is 2 Bytes which is the number of received packets. DUT should wait at least 500ms after received EDN_FLAG DUT should transmit the REPORT packet three times.

EX) // End Device's Report packet (K=19) 13 00 // Add the time interval (Δ t) 13 00 // Add the time interval (Δ t) 13 00

RedwoodComm : Example NST/MFG application for LoRa End Device (Ver0.900) RWC5020x IP 192.168.0.23 DISCONNECT NON-SIGNALING TEST WITH RWC5020x NST MFG SAVE CLEAR IFG SCENAR CONFIGURE PARAMTERS STOP RWC5020x PARAMETERS COMMON PARAMETERS SEQ TIME DATA POW VERDICT PER 0 1391ms Pathloss 0.5 LORA SN:0x1234,_Model:STM Modulation 13.2 0.000 PASS 868.000 1 1422ms Transmit Power -110 SN:0x1234,_Model:STM 13.2 0.000 PASS Number of Packet Polarity NORMAL 2 1484ms SN:0x1234,_Model:STM 13.2 0.000 PASS 0.01 4_5 TX Interval CR 1390ms SN:0x1234, Model:STM 0.000 3 13.2 PASS PRIVATE 14 Network Power Limit(HI) 10 SF ANY Power Limit(LO) BW 125 PER Criteria IDI F RWC5020x LOG DUT LOG STEP 1 ate the test with START_FLAG ^ READ:NST:MFG:STATUS? Ra test packet (READ:NST:MFG:STATUS? READ:NST:MFG:STATUS? the test with END_FLAG IDLE wait tim READ:NST:MFG:STATUS? he number of received packets (K) te number of received packets (K) te number of received packets (K) READ:NST:MFG:STATUS? COM=.LAN=192.168.0.23

MFG test of the example application

Fig 4. Screenshot of Application during NST-MFG test

Parameters

RWC5020x PARAN	IETERS	COMMON PARA	METERS	
Pathloss	0.5	Modulation	LORA	\sim
Transmit Power	-110 🔺	Frequency	868.000	*
Number of Packet	10 🔹	Polarity	NORMAL	\sim
TX Interval	0.3	CR	4_5	\sim
Power Limit(HI)	14	Network	PRIVATE	\sim
Power Limit(LO)	10 🗘	SF	ANY	\sim
PER Criteria	0.10	BW	125	\sim

Fig 5. NST-MFG Parameters

RWC5020x PARAMETERS

Path loss

RF path loss between antennas of the tester and DUT

Transmit Power

TX power of the tester to evaluate the receiver performance of DUT

Number of Packets

the number of test packets to be transmitted

TX Interval

the time interval between consecutive test packets

Power Criteria (HI)

the upper limit of measured TX power to determine the verdict

Power Criteria (LO)

the lower limit of measured TX power to determine the verdict

PER Criteria

the limit of PER to determine the verdict

TEST PARAMETERS

Modulation

LORA only

<u>Frequency</u>

RF frequency to be tested

<u>Polarity</u>

NORMAL only

CR(Coding Rate) 4/5, 4/6, 4/7, 4/8

<u>Network</u>

PRIVATE, PUBLIC

Bandwidth (BW)

125kHz, 250kHz, or 500kHz

Spreading Factor (SF) SF7 ~ SF 12

Result Information

<u>SEQ</u>

Sequential number of test

<u>TIME</u>

Elapsed test time in millisecond unit

<u>DATA</u>

Data in the START_FLAG packet from the DUT

<u>POWER</u>

Power value of the DUT measured by the RWC5020x

<u> PER</u>

PER value of the DUT measured by the RWC5020x

<u>VERDICT</u>

Verdicted by the RWC5020x TIMEOUT, PASS, or FAIL

SEQ	SF	вw	Pow	Time	dwell	Data	Signal
0008	7	125	-90.0	0.300s	30	FF FF	Generator
0009	7	125	12.5	16.29s	30	32 00	
0010	7	125	12.4	0.14s	30	32 00	
0011	7	125	12.5	0.14s	30	32 00	Signal
0012	7	125	12.5	0.92s	56	FF FF 53 4E 3A 30 78 31 32 33	Analyzer
0013	7	125	-110.0	0.300s	25	7F	
0014	7	125	-90.0	0.300s	30	FF FF	MEG
0015	7	125	12.5	16.29s	30	33 00	IVIEG
0016	7	125	12.5	0.14s	30	33 00	
0017	7	125	12.4	0.14s	30	33 00	
					St	opped	
n1 (CLE	٩R					LINK: Stopped

Fig 6. Screenshot of MFG test of RWC5020x

NST-TX Test

This test is to measure the transmitted power and frequency of DUT. The tester RWC5020x is in RX mode to measure the power and frequency from DUT. In RX mode, RWC5020x is always ready to measure the power and frequency from DUT. Frequency measurement is only available in CW mode test and with RWC5020B and RWC5020M.

Users need to connect the application program with the DUT with RS232 to set DUT parameters if necessary.

Test Procedure

Step 1

Set the tester RWC5020x as RX mode. In RX mode, the tester waits for any signal.

Step 2

Make the DUT transmit LORA or CW signal. In CW modulation mode, the tester measures power and frequency periodically according to the 'test interval' parameters. In LORA modulation mode, the tester measures only the power of the DUT whenever it receives a LORA packet.

Step 3

Read the measured power and frequency values from RWC5020x.

NST/MFG Example application for testin	ng LoRa device using RWC5020x (Ver1.0	00)	- 0
MFG NST X TEST RX TEST DUT PORT SCA		GNALING TEST WITH RWC5020x	RWC5020x IP 192.168.0.23 DISCON
RWC5020x PARAMETERS Pathloss 0.5	COMMON PARAMETERS Modulation Frequency Polarity CR 4_5 V	[TEST CONDITION] FREGELINCY 868.000Mhz MODULATION LORA RX.POLARITY NORMAL CR 4.5 NETWORK PRIVATE SF 557 BW 125 PACKETS # 10	
DUT PARAMETERS Transmit Power Number of Packet 10 +	Network PRIVATE ~ SF SF7 ~ BW 125 ~	[TEST RESULT] Measured Power Average 9.0 dBm Minimum 9.0 dBm Maximum 9.0 dBm Elapsed Time 734 ms	
RWC5020x -	- RECEIVER	RWC5020x LOG	DUT LOC
Ser RVX-5020 to RX mode RVXC5020 DVTD Reservery heaveney	Set DUT to TX F of Packets & Power	EXEC:NST:RX:RUN ACK READ:NST:RX:POW_AVG? 9.0 READ:NST:RX:POW_MIN? 9.0 READ:NST:RX:POW_MIN? 9.0	 OK OK AT-TOFF OK AT+TCONF-868000000:10:125:7:4/5:0:0
	APP Read power data from RWC5020	EXEC:NST:RX:STOP	ok ok

The T

Fig 7. Screenshot of Application during NST-TX test(LORA Modulation)

NON-SIGNALING TEST WITH RWC5020x RWC5020x IP 192:168.0.44 DISCONNECT MFG NST TX TEST RX TEST OUT PORT SCAN PORT COMM3 CLOSE PORT RWC5020x IP DISCONNECT TX POWER TEST TX POWER TEST TX POWER TEST Pathloss 0.5 OMMON PARAMETERS Modulation CW MS68.000 CITEST CRUICINCY 868.000 CITEST RESULTI Frequency 868.000 Frequency 868.000 CITEST RESULTI Measure Power Measure Power Average 8.4 dBm Maximum 8.4 dBm Maximum 8.4 dBm	RedwoodComm : Example NST/MFG application for LoRa End Device (Ver0.900))	-	o x
TX TEST RX TEST DUT PORT SCAN PORT COM3 CLOSE PORT TX TEST RUN CONFIGURE PARAMTERS RWC5020x PARAMETERS Pathioss 0.5 COMMON PARAMETERS Modulation CW Test Interval 0.2 Prequency Frequency 858.000 Frequency DUT PARAMETERS Modulation CW DUT PARAMETERS Modulation CW DUT PARAMETERS Modulation Maintein		GNALING TEST WITH RWC5020x	RWC5020x IP 192.168.0.44	DISCONNECT
Messured Frequency Average \$66.0004 MHz Minimum \$68.0003 MHz Maximum \$68.0005 MHz Elapsed Time 391 ms	TX TEST RX TEST DUT PORT SCAN PORT CONFIGURE PARAMTERS RWC50200 PARAMETERS COMFIGURE PARAMTERS Pathloss 0.5 \$ Test Interval 0.2 \$ Fcnt average N 3 \$	[TEST_CONDITION] FREQUINCY 868.000Mhz MODULATION CW MEASURE INTERVAL 0.2 FCNT AVERAGE NUM 3 [TEST RESULT] Messured Power Average 84.dBm Minimum 84.dBm Messured Frequency Average 856.0004 MHz Maximum 866.0005 MHz		
RWC5020x - RECEIVER RWC5020x LOG DUT LOG		RWC5020x LOG		DUT LOG
READ:187:18X:POL_MAX2 Test Stop READ:187:18X:POL_MAX2 K READ:187:18X:STOP K AF#TIONE K	set DUT to TX set DUT to TX s & Apoer Burts DUT's meaning DUT's meaning are	8.4 READ: RF: MEASURED_FREQ_AVG? BG8.0004 READ: RF: MEASURED_FREQ_MIN? BG8.0003 READ: RF: MEASURED_FREQ_MAX? BG8.0005 EXEC: NST: RX: STOP	OK AT+TCONF+868000000:10:125:7:4/5:0:0 OK AT+TCONF+868000000:10:125:7:4/5:0:0 OK AT+TTONE Tx F5K TestOK	

Fig 8. Screenshot of Application during NST-TX test(CW modulation)

Parameters

RWC5020x PARAMETERS	COMMON PARAM	METERS		RWC5020x PARAM	VETERS	COMMON PARA	METERS	
Pathloss 0.5	Modulation	LORA	\sim	Pathloss	0.5	Modulation	CW	\sim
	Frequency	868.000	•	Test Interval	0.2	Frequency	868.000	*
	Polarity	NORMAL	\sim	Fcnt average N	3			
	CR	4_5	\sim					
DUT PARAMETERS	Network	PRIVATE	\sim		s			
Transmit Power 10	SF	SF7	\sim	Transmit Power	10			
Number of Packet 10	BW	125	\sim					

Fig 9. NST-TX Parameters

RWC5020x PARAMETERS

Path loss

RF path loss between antennas of the tester and DUT

CW PARAMETER

Test Interval

The time interval between consecutive measurement the CW signal from DUT

Fcnt Average N

The average number to measure the frequency of CW signal from DUT

DUT PARAMETERS

<u>Transmit Power</u> TX power of the DUT

<u>Number of Packets</u> The number of test packets to be transmitted

TEST PARAMETERS

Modulation

LORA , CW

Frequency RF frequency to be tested

LORA PARAMETER

Polarity

NORMAL only

<u>CR(Coding Rate)</u> 4/5, 4/6, 4/7, 4/8

<u>Network</u>

PRIVATE only

Spreading Factor (SF) SF7 ~ SF 12, ANY

<u>Bandwidth (BW)</u>

125kHz, 250kHz, or 500kHz

Result information

Measured Power Average : Averaged power value Minimum : The minimum power value among measured power values Maximum : The maximum power value among measured power values

Measured frequency

Available only in CW modulation test Average : Averaged frequency value Minimum : The minimum frequency value among measured frequency values Maximum : The maximum frequency value among measured frequency values

Elapsed Time

Elapsed test value in millisecond unit.

SEQ	SF	вw	Pow	Time	dwell						Dat	a				Signal
0000	7	125	8.0	8.05s	51	00	11	22	33	44	55	66	77	88	99	Generator
0001	7	125	8.0	0.09s	51	00	11	22	33	44	55	66	77	88	99	
0002	7	125	8.0	0.09s	51	00	11	22	33	44	55	66	77	88	99	· · · ·
0003	7	125	8.0	0.09s	51	00	11	22	33	44	55	66	77	88	99	Signal
0004	7	125	8.0	0.09s	51	00	11	22	33	44	55	66	77	88	99	Analyzer
0005	7	125	8.0	0.09s	51	00	11	22	33	44	55	66	77	88	99	
0006	7	125	8.0	0.09s	51	00	11	22	33	44	55	66	77	88	99	BAEC
0007	7	125	8.0	0.09s	51	00	11	22	33	44	55	66	77	88	99	MFG
0008	7	125	8.0	0.09s	51	00	11	22	33	44	55	66	77	88	99	
0009	7	125	8.0	0.09s	51	00	11	22	33	44	55	66	77	88	99	
n 1 C	CLE/	٩R														LINK: Stopped

Fig 10. Screenshot of NST-TX test of RWC5020x

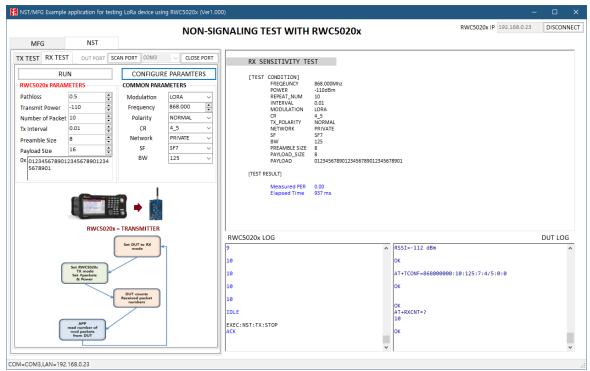
NST-RX Test

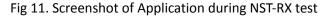
This test is to measure the sensitivity of DUT using PER(Packet Error Rate). The tester RWC5020x should be in TX mode to transmit LORA packets consecutively. Users need to set the DUT as RX mode. There is no protocol in this test but DUT is supposed to be able to count the number of received packets from RWC5020x. In order to report PER, the DUT should be able to report the number of received packets to the application as a response to the command asking the number of received packets. Users need to connect the application program with the DUT with RS232 for this purpose.

Test Procedure

Step 1

Set the DUT as RX mode.


Step 2


Make the tester RWC5020x as TX mode and execute transmission.

Step 3

Read the received packet number from the DUT. Make sure the last packet is finished transmitting before reading the received packet number. You can use "READ:NST:TX:STATUS?" to ensure if the last packet transmitting is finished. Response "BUSY" indicates it is still transmitting. Response "IDLE" indicates it is finished transmitting.

The RX-Test of the example application

Parameters

RWC5020x PARAM	IETERS	COMMON PARA	METERS	
Pathloss	0.5	Modulation	LORA	\sim
Transmit Power	-110	Frequency	868.000	-
Number of Packet	10	Polarity	NORMAL	\sim
Tx Interval	0.3	CR	4_5	\sim
Preamble Size	8	Network	PRIVATE	\sim
Payload Size	16	SF	SF7	\sim
0x 012345678901 5678901	2345678901234	BW	125	~

Fig 12. NST-RX Parameters

RWC5020x PARAMETERS

Path loss

RF path loss between antennas of the tester and DUT

Transmit Power

TX power of the tester to evaluate the receiver performance of DUT

Number of Packets

the number of test packets to be transmitted

TX Interval

the time interval between consecutive test packets

Preamble Size

the length of preamble in LoRa frame

Payload Size

the length of payload

Payload

User payload

TEST PARAMETERS

Modulation

LORA only

Frequency

RF frequency to be tested

<u>Polarity</u>

INVERSE, NORMAL

<u>CR(Coding Rate)</u>

4/5, 4/6, 4/7, 4/8

<u>Network</u>

PUBLIC, PRIVATE

Spreading Factor (SF)

SF7 ~ SF 12

<u>Bandwidth (BW)</u>

125kHz, 250kHz, or 500kHz

Test Result information

Measured PER

Measured packet error rate

Elapsed Time

Elapsed Test time in millisecond unit.

SEQ	SF	вw	Pow	Time	dwell						Dat	a				Signal
0060	7	125	-110.0	0.300s	51	01	23	45	67	89	01	23	45	67	89	Generator
0070	7	125	-110.0	0.300s	51	01	23	45	67	89	01	23	45	67	89	
0080	7	125	-110.0	0.300s	51	01	23	45	67	89	01	23	45	67	89	
0090	7	125	-110.0	0.500s	51	01	23	45	67	89	01	23	45	67	89	Signal
0100	7	125	-110.0	0.500s	51	01	23	45	67	89	01	23	45	67	89	Analyzer
0110	7	125	-110.0	0.500s	51	01	23	45	67	89	01	23	45	67	89	
0120	7	125	-110.0	0.500s	51	01	23	45	67	89	01	23	45	67	89	BAEC
0130	7	125	-110.0	0.500s	51	01	23	45	67	89	01	23	45	67	89	MFG
0140	7	125	-110.0	0.300s	51	01	23	45	67	89	01	23	45	67	89	
0150	7	125	-110.0	0.300s	51	01	23	45	67	89	01	23	45	67	89	
				S	tatu	s :	0	FF								

Fig 13. Screenshot of NST-RX test of RWC5020x

Headquarter

#14008, OfficeSection Bldg, SK M-city, 195, Baengma-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea +82-70-7727-7011

Canada Branch

Suite 206, 3711 Delbrook Avenue, North Vancouver, BC V7N 3Z4, Canada +1-640-770-2688

E-mail <u>sales@RedwoodComm.com</u> Webpage <u>http://RedwoodComm.com/</u>